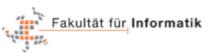


Rechnerstrukturen

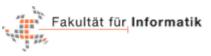
Vorlesung im Sommersemester 2009

Prof. Dr. Wolfgang Karl


Universität Karlsruhe (TH)

Fakultät für Informatik

Institut für Technische Informatik

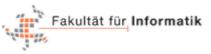


 Kapitel 3: Multiprozessoren – Parallelismus auf Prozess/Thread-Ebene

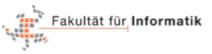
3.7: Multiprozessoren mit verteiltem Speicher

- Massively Parallel Supercomputer
 - Ziel:
 - günstiges Cost/Performance-Verhältnis für ein breites Spektrum von Anwendungen
 - Günstiges Performance/Power-Verhältnis
 - Grundlegender Ansatz:
 - System-on-Chip Design für den Prozessor
 - » Hohe Integrationsdichte
 - » Low Power
 - » Low Design Cost
 - Hohe Skalierbarkeit der Anwendungen
 - » Hohe Anforderung an die Skalierbarkeit des VErbindungsnetzwerkes

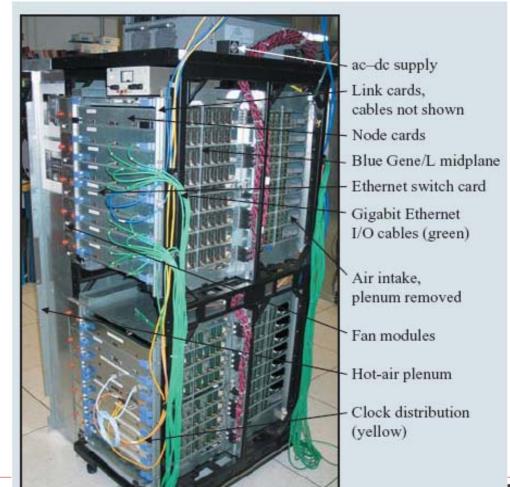
- Massively Parallel Supercomputer
 - Bedeutung Low-Power
 - Für einen Rechner mit einer Leistung im Bereich 380 TFlops mit konventionellen Hochleistungsprozessoren würde der Leistungsverbrauch bei etwa 10 MW – 20 MW liegen, was den Energieverbrauch einer 11000 Einwohner Stadt entspricht.
 - Ein Rack mit 1024 Dual-Prozessor Knoten
 - » Ausmaße: 0.9m x 0.9m x 1,9m
 - » Energieverbrauch: 27,5 kW
 - Bedeutung: Zuverlässigkeit, Verfügbarkeit, Sicherheit (Reliability, Availability, Security, RAS)
 - Bedeutung: Programmierunterstützung
 - Nachrichten-orientiertes Programmiermodell MPI,



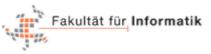
- IBM Blue Gene/L Überblick
 - Massively Parallel Supercomputer
 - Anwendungsszenarios:
 - Simulation physikalischer Phänomene
 - Echtzeit-Datenverarbeitung
 - Off-line Datenanalyse
 - Anwendungen in den großen amerikanischen Forschungslabors



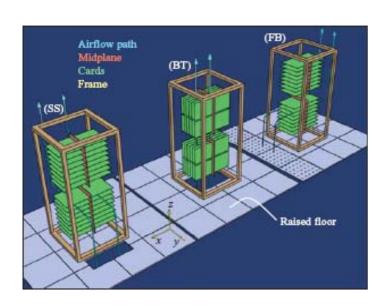
- IBM Blue Gene/L Überblick
 - Systemkomponenten
 - 65536 Knoten
 - ASIC: Dual-Processor Chip
 - 18 SDRAM chips
 - Knoten über 5 Netzwerke verbunden
 - Wichtigstes Netzwerk mit höchster Bandbreite
 - » 64 x 32 x 32 3-D Torus

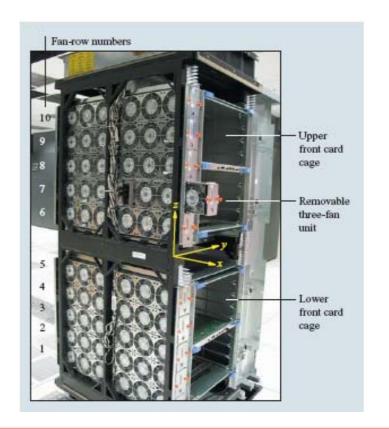


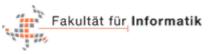
- Systemkomponenten
 - 65536 Knoten in bis zu 64 Racks, die auch so organisiert werden können, als wären es verschiedene Systeme, wobei auf jedem ein eigenes Single Software Image läuft
 - Knoten
 - 2 BG/L Compute ASIC (BLC)
 - » Dual Processor SoC ASIC
 - 9 Double data rate synchronous dynamic random access memory chips (DDR SDRAM chips) pro ASIC
 - Knoten über 5 Netzwerke verbunden
 - Wichtigstes Netzwerk mit höchster Bandbreite
 - » 64 x 32 x 32 3-D Torus
 - » Global Collective Network
 - » Global Barrier and Interrupt Network
 - » I/O Network (Gigabit Ethernet)
 - » Service Network

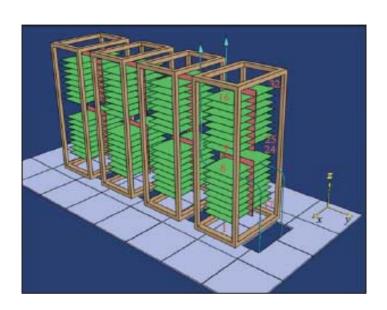


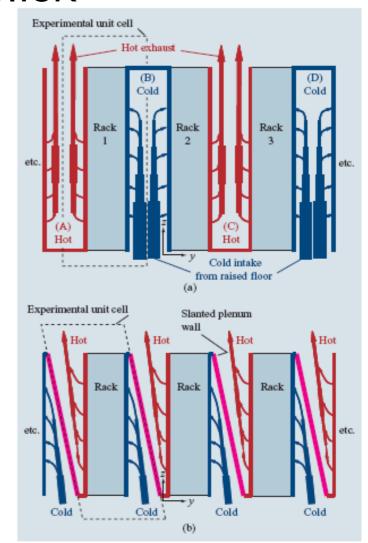
- Systemkomponenten
 - System Rack

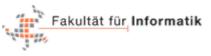


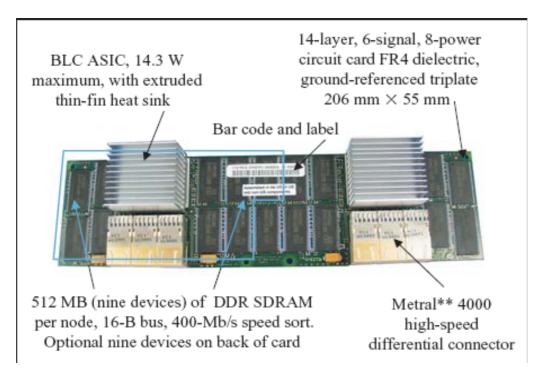


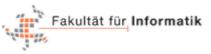



- Systemkomponenten
 - Kühlung

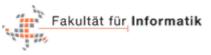




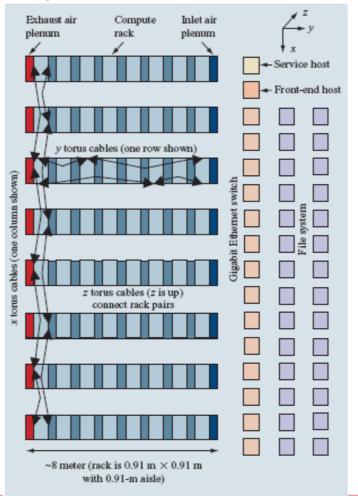

-Systemaufbau



- Systemkomponenten
 - BG/L Compute card

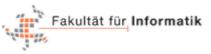


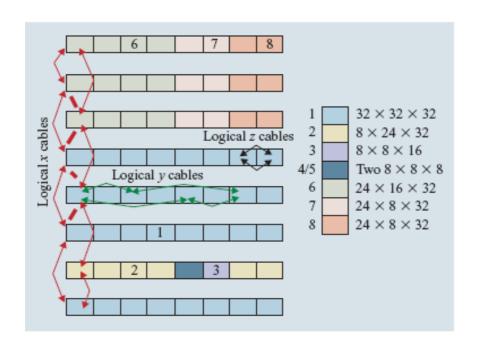
- IBM Blue Gene/L Überblick
 - Systemkomponenten
 - BG/L Node Card

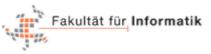


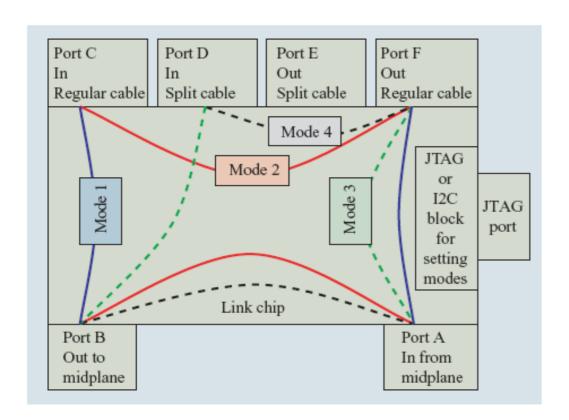
Ein BG/L System kann für eine Anwendung konfiguriert

werden

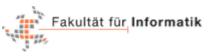



- Systempartitionierung
 - Partitionierung in kleinere Systeme
 - Beispiel System mit 20K Knoten (20 Rack-System)
 - » 4 Reihen mit 4 Compute Racks (16 K Knoten)
 - » Mit Stand-by Menge von 4 Racks für Fail-over
 - 2 Host-Rechner
 - Verwaltung des Rechners
 - Vorbereiten der Jobs
 - I/O Racks mit RAIDs
 - Switch Racks
 - Mit Gigabit Ethernet für die Verbindung der Compute Nodes, I/O Nodes, und Host-Rechner

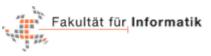


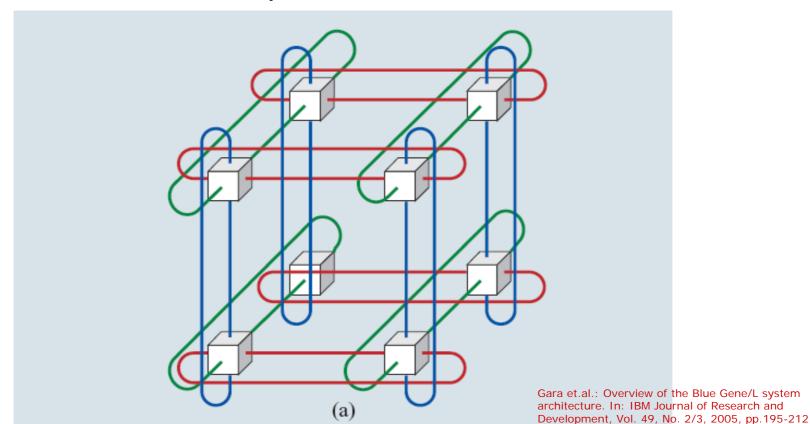


- IBM Blue Gene/L Überblick
 - Systempartitionierung
 - Partitionierung für 8 Benutzer

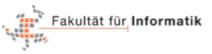


-BG/L Link chip

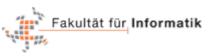


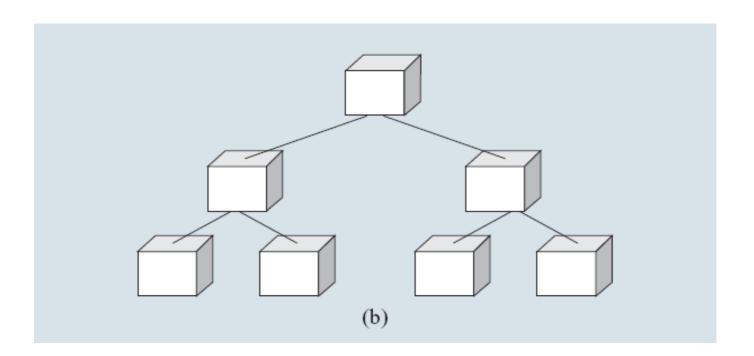


- -BG/L Link chip
 - Ports A und B direkt mit "midplane" verbunden
 - Ports C,D,E und F sind mit Kabeln verbunden
 - Statisches Routing, das vom Host bei der Partitionierung festgelegt wird
 - Bleibt bis zu einer Neukonfigurierung bei einer neuen Partitionierung fest
 - Jeder Link chip Port bedient 16 unidirektionale Torus Links
 - Weitere Signale für Collective und Barrier Network
 - Jede Midplane enthält 24 Link Chips
 - Jede Midplane bildet ein 8x8x8 Gitter

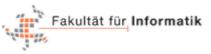


- IBM Blue Gene/L Überblick
 - Verbindungsnetzwerke
 - 3-D Torus (Beispiel 2 x 2 x 2 Torus)

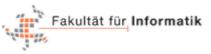

- Verbindungsnetzwerke
 - 3-D Torus
 - Jeder Knoten kann mit jedem Knoten kommunizieren
 - Jeder Knoten teilt seine Kommunikationsbandbreite mit Cutthrough-Verkehr von anderen Knoten
 - Kommunikationsabhängige effektive Bandbreite
 - Algorithmenentwurf
 - » Möglichst lokale Kommunikation
 - Cut-Through Routing
 - Adaptive Routing
 - » Erlaubt jeden minimalen Pfad zu wählen
 - » Möglichst blockierungsfrei
 - » Dynamische Wahl der Route für die Pakete
 - Multicast-Unterstützung in jede Richtung
 - Kommunikationslatenz für für die am weitesten entfernten Knoten: 6,4µs (64Hops)

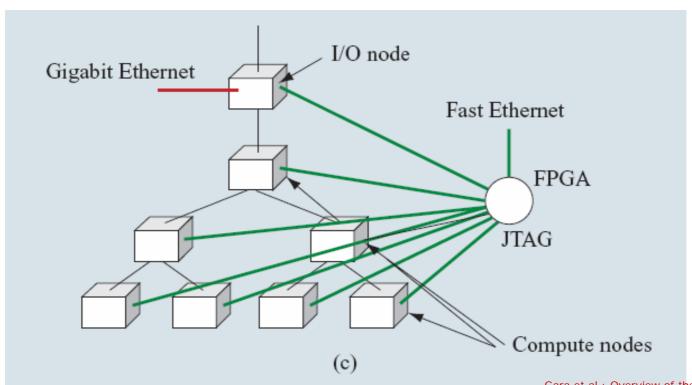


- Verbindungsnetzwerke
 - Collective Network
 - Erstreckt sich über gesamte Maschine
 - Daten können von jedem Knoten zu allen anderen verschickt werden (broadcast)
 - » 5µs Latenz
 - Zusätzliche Arithmetik-Reduktionsoperationen
 - » Min, max, sum, OR, AND, XOR Operationen
 - » Z.B. für globale Summation
 - Statisches Routing

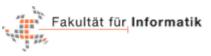


- IBM Blue Gene/L Überblick
 - Verbindungsnetzwerke
 - Collective Network



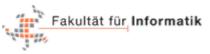

- Verbindungsnetzwerke
 - Barrier Network
 - Verbesserung der Latenz für globale Operationen
 - 4 unabhängige Kanäle
 - » Globales OR über alle Knoten: globaler Interrupt, wenn die Maschine oder eine Partition angehalten werden muss, z.B. für Diagnose-Zwecke
 - » Individuelle Signale werden in Hardware verknüpft und an die physikalische Wurzel eines Baums weitergeleitet
 - » Das Ergebnis-Signal wird an alle Knoten im Baum verteilt (broadcast)
 - » Globale AND-Operation mit Hilfe Inverter-Logik: globaler Barrier
 - » Round-Trip-Latenz: 1,5µs bei 64K Knoten

- IBM Blue Gene/L Überblick
 - Verbindungsnetzwerke
 - Control system network

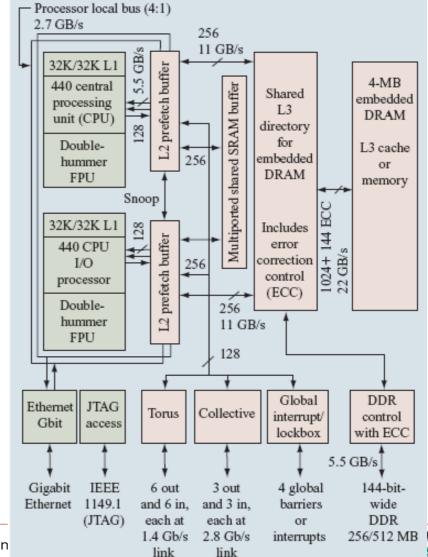




- Verbindungsnetzwerke
 - Control system network
 - Eine BG/L Maschine enthält eine Menge von 250000 Endpunkten in Form von ASICs, Temperatursensoren, Spannungsversorgung, Taktversorgung, Kühler, Status-Leuchtdioden, etc., die alle initialisiert, gesteuert und beobachtet werden müssen
 - Diese Aktionen werden von Service Node durchgeführt
 - Zugriff auf Endknoten über ein Intranet auf Ethernet-Basis
 - Control-FPGA übernimmt Protokoll-Umsetzung in verschiedene Netzwerkprotokolle

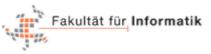


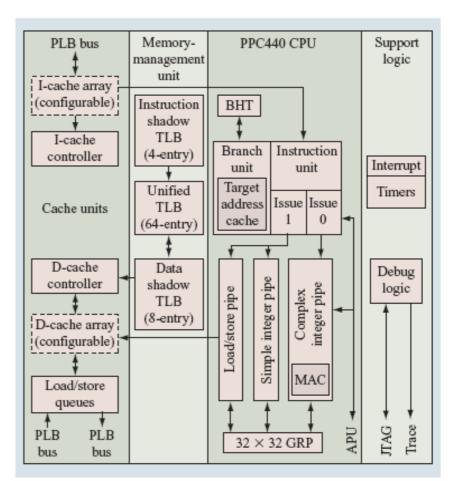
- Verbindungsnetzwerke
 - Gigabit-Ethernet
 - I/O-Knoten haben Gigabit-Ethernet-Schnittstelle für den Zugriff auf externe Ethernet-Switches
 - Verbindung zwischen I/O-Knoten und dem externen parallelen File-System sowie zum externen Host
 - Anzahl I/O-Knoten ist konfigurierbar
 - » Maximales I/O zu Compute-Node-Verhältnis ist 1:8


15 - 25


- -Blue Gene/L Node
 - BLC ASIC
 - SoC, integriert die wesentlichen Funktionen eines Rechners auf einem Chip
 - » 2 PowerPC 440
 - » FP-Core für jeden Prozessor
 - » Embedded DRAM
 - » DDR Memory Controller für externen Speicheranschluss
 - » Gigabit Ethernet-Adapter
 - » Alle Puffer für die Torus-Netzwerk-Schnittstelle

- Blue Gene/L Node
 - BLC ASIC

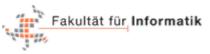


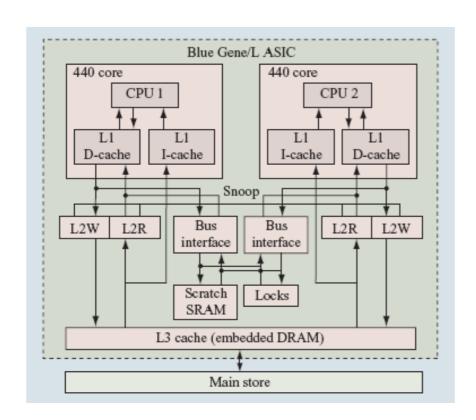


- -Blue Gene/L Node
 - PowerPC 440
 - Taktfrequenz: 700 MHz
 - Superskalartechnik
 - 32-Bit Book-E Enhanced PowerPC Befehlssatz-Architektur
 - 7-stufige Pipeline

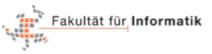
15 - 28

- -Blue Gene/L Node
 - PowerPC 440

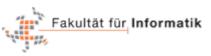




- -Blue Gene/L Distributed Memory Architektur
 - Hierarchie:
 - On-chip Cache-Hierarchie
 - Off-Chip Hauptspeicher
 - On-Chip-Logik für Synchronisation und Kommunikation der beiden Prozessoren auf dem Chip
 - Verteilte Speicher-Architektur
 - Jeder Knoten hat 512 MB physikalischen Speicher
 - » Gemeinsamer Speicher für die beiden Prozessoren auf dem Chip
 - Insgesamt: 32 TBytes Speicher



- IBM Blue Gene/L Überblick
 - Blue Gene/L Distributed Memory Architektur


- -Blue Gene/L Distributed Memory Architektur
 - Kohärenz
 - PPC440 Core keine Kohärenz-Unterstützung
 - » SW unterstützt Kohärenz auf L1-Ebene
 - L2 und L3 sind sequentiell konsistent mit Hardware-Unterstützung
 - Kein Inklusions-Eigenschaft für L1 und L2 sowie L1 und L3

- Blue Gene/L Distributed Memory Architektur
 - Communiaction coprocessor mode
 - Ein Prozessor übernimmt Kommunikationsaufgaben
 - Der andere Übernimmt die Berechnungen
 - L1 Kohärenz wird auf System-Ebene mit Hilfe von Bibliotheken erreicht
 - Virtual Node Mode
 - Knoten wird logisch in zwei Knoten mit jeweils einen Prozessor und dem halben physikalischen Speicher aufgeteilt
 - Jeder Prozessor kann auf seinen eigenen
 Speicherbereich lesend und schreibend zugreifen und auf den anderen lesend
 - Vermeidet Duplizieren von Anwendungsdaten
 - Auf Knoten laufen zwei Anwendungsprozesse

Literatur:

- IBM Journal of Research and Development, Vol. 49, No. 2/3, 2005, Special Issue